导航:首页 > 污水处理 > 自贡荣县光学污水处理

自贡荣县光学污水处理

发布时间:2021-04-22 21:25:02

污水处理中的tss是什么

TSS就是总悬浮固体,TSS是英语(Total Suspended Solid或者Total Suspended Substance)的缩写,即水质中的总悬浮物。

它是指水样通过孔径为0.45μm的滤膜截留在滤膜上并于103~105℃ 烘干至恒重的固体物质,是衡量水体水质污染程度的重要指标之一,计量单位是mg/L。

(1)自贡荣县光学污水处理扩展阅读:

监测总固体悬浮物:影像数据选择

广义的影像数据分为光学影像和雷达影像,光学数据又分为多光谱影像、多时相影像、高光谱影像等。目前国内外对悬浮固体的遥感研究大多利用光学影像,其中大多影像数据都被选作悬浮固体的反演数据。

常见的多时相数据被广泛的应用于不同时间尺度的悬浮固体空间分布分析上。是搭载于和卫星上的一个重要的传感器,其空间分辨率最大可达到,一天可过境次,实时监测能力很强。

王繁等人曾利用资料反演杭州湾表层悬浮物浓度并对其短期变异进行研究。数据属于中等分辨率影像,相比于数据分辨率有很大的提高。

⑵ 污水处理

【污水处理简介】
按污水来源分类,污水处理一般分为生产污水处理和生活污水处理。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和有机物的复杂混合物,包括:①漂浮和悬浮的大小固体颗粒;②胶状和凝胶状扩散物;③纯溶液。
按污水的性质来分,水的污染有两类:一类是自然污染;另一类是人为污染。当前对水体危害较大的是人为污染。水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类。污染物主要有::(1)未经处理而排放的工业废水;(2)未经处理而排放的生活污水;(3)大量使用化肥、农药、除草剂的农田污水;(4)堆放在河边的工业废弃物和生活垃圾;(5)水土流失;(6)矿山污水。
污水处理[1]被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。
[编辑本段]【处理程度划分】
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理,
主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理,
主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,
进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。
整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

⑶ 污水处理站怎样处理含氰废水

处理含氰废水的方法
除了氯氧化法、二氧化硫-空气氧化法、过氧化氢氧化法、酸化回收法、萃取法已独立或几种方法联合使用于黄金氰化厂外,生物化学法、离子交换法、吸附法、自然净化法在国内外也有工业应用,由于报道较少,工业实践时间短,资料数据有限,本章仅对这些方法的原理、特点、处理效果进行简要介绍。
一、生物化学法
1、生物法原理
生物法处理含氰废水分两个阶段,第一阶段是革兰氏杆菌以氰化物、硫氰化物中的碳、氮为食物源,将氰化物和硫氰化物分解成碳酸盐和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
对金属氰络物的分解顺序是Zn、Ni、Cu、Fe对硫氰化物的分解与此类似,而且迅速,最佳pH值6.7~7.2。
细菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二阶段为硝化阶段,利用嗜氧自养细菌把NH3分解:
细菌
NH3+1.5O2→NO2-+2H++H2O
细菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物经过以上两个阶段,分解成无毒物以达到废水处理目的。
生物化学法根据使用的设备和工艺不可又分为活性污泥法、生物过滤法、生物接触法和生物流化床法等等,国内外利用生物化学法处理焦化、化肥厂含氰废水的报导较多。
据报道,从1984年开始,美国霍姆斯特克(Homestake)金矿用生物法处理氰化厂废水,英国将一种菌种固化后用于处理2500ppm的废水,出水CN-可降低到1ppm,是今后发展的方向。
微生物法进入工业化阶段并非易事,自然界的菌种远不能适应每升数毫克浓度的氰化物废水,因此必须对菌种进行驯化,使其逐步适应,生物化学法工艺较长,包括菌种的培养,加入营养物等,其处理时间相对较长,操作条件严格。如温度、废水组成等必须严格控制在一定范围内,否则,微生物的代谢作用就会受到抑制甚至死亡。设备复杂、投资很大,因此在黄金氰化厂它的应用受到了限制。但生物化学法能分解硫氰化物,使重金属形成污泥从废水中去除,出水水质很好,故对于排水水质要求很高、地处温带的氰化厂,使用生物法比较合适。
2、生物法的应用情况
国外某金矿采用生物化学法处理氰化厂含氰废水。首先,含氰废水通过其它废水稀释,氰化物含量降低到生化法要求的浓度(CN-<10.0mg/L)、温度(10℃~18℃,必要时设空调),pH值(7~8.5)然后加入营养基(磷酸盐和碳酸钠),废水的处理分两段进行,两段均采用Φ3.6×6m的生物转盘,30%浸入废水中以使细菌与废水和空气接触,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸盐和氨,同时重金属被细菌吸附而从废水中除去,第二段包括氨的细菌硝化作用,首先转化为亚硝酸盐,然后被转化为硝酸盐,第一段采用事先经过驯化的,微生物从工艺水中以两种适应较高的氰化物和硫氰化物的浓度。第二段采用分离出来的普通的亚硝化细菌和硝化细菌,被附着在转盘上的细菌的浮生物膜吸附重金属并随生产膜脱落而被除去,通过加入絮凝剂使液固两相分开,清液达标排放,污泥排放尾矿库。该处理装置处理废水(包括其它废水)800m3/h,每个生物转盘直径3.6m,长6m。由波纹状塑料板组成。该处理厂总投资约1000万美元,其处理指标见表10-1。
表10-1 生物化学法处理含氰废水效果
废水名称 废水各组份含量(mg/L)
总CN- CN- SCN- Cu
处理前 3.67 2.30 61.5 0.56
处理后 0.33 0.05 0.50 0.04
3、生物化学法的特点
(一)优点
生物法处理的废水,水质比较好,CN-、SCN-、CNO-、NH3、重金属包括Fe(CN)64-均有较高的去除率,排水无毒,尤其是能彻底去除SCN-,是二氧化硫-空气法、过氧化氢氧化法、酸化回收法等无法做到的。
(二)缺点
1)适应性差,仅能处理极低浓度而且浓度波动小的含氰废水,故氰化厂废水应稀释数百倍才能处理,这就扩大了处理装置的处理规模,大大增加了基建投资。
2)温度范围窄,寒冷地方必须有温室才能使用。
3)只能处理澄清水,不能处理矿浆。
二、离子交换法
1950年南非开始研究使用离子交换法处理黄金行业含氰废水。1960年苏联也开始研究,并在杰良诺夫斯克浮选厂处理含氰废水并回收氰化物和金。
1970年工业装置投入运行,取得了较好的效果,1985年加拿大的威蒂克(Witteck)科技开发公司开发了一种处理含氰废水的离子交换法,不久又成立了一个专门推广该技术的公司,叫Cy-tech公司,离子交换法处理进行研究,取得了许多试验数据,并已达到了工业应用的水平。
1、离子交换法的基本原理
离子交换法就是用离子交换树脂吸附废水中以阴离子形式存在的各种氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附与上述类似,硫氰化物阴离子在树脂上的吸附力比CN-更大,更易被吸附在树脂上。
R2SO4+2SCN-→2RSCN
在强碱性阴离子交换树脂上,黄金氰化厂废水中主要的几种阴离子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
树脂饱和时,如果继续处理废水,新进入树脂层的Zn(CN)42-就会将其它离子从树脂上排挤下来,使它们重新进入溶液,但即使继续进行这一过程,树脂上已吸附的各种离子也不会全部被排挤下来,各种离子在树脂上的吸附量根据各种离子在树脂上的吸附能力以及在废水中的浓度不同有一部分配比。对于强碱性树脂来说,这种现象十分明显,具体表现在流出液的组成随处理量的变化特性曲线上。各组分当被吸附力强于它的组分从树脂上排挤下来时,其流出液浓度会出现峰值。
不同的弱碱树脂具有不同的吸附特性。因此,对不同离子的吸附力也有很大差别,研究用离子交换法处理含氰废水的一个重要任务就是去选择甚至专门合成适用于我们要处理的废水特点的树脂,否则树脂处理废水的效果或洗脱问题将难以满足我们的需要。难以工业化应用。
2、离子交换法存在的问题及解决途径
离子交换法存在的问题主要是树脂的中毒问题,主要是吸附能力强于氰化物离子的硫氰化物、铜氰络合物和铁氰络合物。由于上述物质吸附到树脂上,使树脂的洗脱变得较为复杂甚至非常困难。
(一)硫氰化物
对于大部分金氰化厂来说,废水中含有100mg/L以上的SCN-,其中金精矿氰化厂废水SCN-高达800mg/L以上,由于强碱性阴离子交换树脂对SCN-的吸附力较大,而且SCN-的浓度如此之高,使树脂对其它应吸附而从废水中除去的组分的吸附量大为降低,如Zn(CN)42-、Cu(CN)32-,同时,由于SCN-的饱和,会使CN-过早泄漏,导致离子交换树脂的工作饱和容量过低。例如,当废水中SCN-350mg/L时,其工作饱和容量(指流出液中CN-≤0.5mg/L条件)仅20倍树脂体积,而且SCN-难以从树脂上通过简单的方法洗脱下来,这就限制了具有大饱和容量的强碱性阴离子交换树脂的应用,而弱碱性阴离子交换树脂饱和容量最高不过强碱性树脂的一半,从处理洗脱成本考虑,也不易使用,可见较高的SCN-浓度给离子交换树脂带来很大麻烦。如果从树脂上不洗脱SCN-,那么流出液CN-不能达标,即使不考虑CN-的泄漏,树脂对其它离子的工作容量也减少。
(二)铜
尽管树脂对Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的浓度往往较高,在强碱树脂上的饱和容量约8~35kg/m3,甚至更高,但用酸洗脱树脂上的氰化物时,铜并不能被洗脱下来,而是在树脂上形成CuCN沉淀,为了洗脱强碱树脂上的铜,必须采用含氨洗脱液洗脱,使铜溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脱下来,这就使工艺复杂化,尤其是洗脱液的再生也不够简便。
(三)亚铁氰化物离子
Fe(CN)64-尽管在树脂上吸附量不大,但在用酸洗脱树脂上氰化物和锌时,会生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉淀物,而使树脂呈深绿至棕黑色,影响树脂的再生效果,如果专门洗脱Fe(CN)64-,尽管效果好,可是,洗脱液再生等问题均使工艺变得更长,操作更复杂。
3、技术现状
根据国产强碱树脂的上述特点,提出二种工艺:一是用强碱性阴离子处理高、中浓度含氰废水,旨在去除废水中的Cu、Zn,废水不达标但由于Cu、Zn的大为减少而有宜于循环使用。二是用强碱性树脂处理不含SCN-或SCN-浓度100mg/L以下的废水,回收氰化物为主,处理后废水达标外排。例如,在金精矿烧渣为原料的氰化厂用离子交换法处理贫液。把离子交换法用于这两方面在技术和经济上估计比用酸化回收法优越。最好的办法是开发易洗脱再生的新型树脂,国外的许多开发新型树脂的报导介绍了吸附废水中Fe(CN)64-、而且较容易被洗脱下来的树脂,近年来,由于越来越重视三废的回收,使人们十分重视使用离子交换法处理废水使其达到排放标准同时使大多数氰化物得以回收并重新使用这类课题。
加拿大Witteck开发公司开发出的一种氰化物再循环工艺就是其中比较有代表性的一例,该公司为此成立了一个Cy-tech公司专门推销这种工艺装置。一份报导介绍,该工艺用于处理锌粉置换工艺产生的贫液,使用强碱性阴离子交换树脂吸附重金属氰化物,当流出液CN-超标时对树脂进行酸洗,使用硫酸自下而上通过树脂床即可使树脂上的重金属和氰化物被洗脱下来,其重金属以阳离子形式存在于洗脱液中,洗脱液用类似于酸化回收法的装置回收HCN,然后大部分洗脱液进行再生并重复用于洗脱。回收的NaCN用于氰化工段,少量洗脱液经过中和沉淀出重金属离子后外排。据称这种方法也可用于处理炭浆厂的尾浆,其工艺和树脂矿浆法十分类似。Cy-tech公司认为该工艺经改进后也可消除尾矿库排水中残余氰化物及其它重金属,该报导无详细数据、资料以及树脂的型号。
另一报导称,这项工艺的关键是在废水进入离子交换柱前,先完成一个化学反应(使游离CN-形成Zn(CN)42-),并在化学反应中应用一种催化剂,有关人士解释说,如果没有这个反应,废水就不得不通过若干个交换柱提出那些无用的分子,从而增加了系统的成本和复杂性。
采用一段顺流吸附装置处理效果是CN-<0.5mg/L、各种重金属的总和小于1mg/L,处理能力约720加仑/h,树脂量约36加仑。
该试验装置大约需要处理3500加仑废水才能使一个交换柱饱和,每隔一天对交换柱进行一次解吸,每月最大产渣量(重金属沉淀物)也可装入1只45加仑的桶中,其废水按所给数据估算重金属总含量不大于50mg/L,估计重金属绝大部分是锌粉置换产生的Zn(CN)42-,该工艺装置的投资与其它处理装置相当。能在一年多的时间里靠回收氰化物而收回全部投资,该工艺由Cy-tech公司开始转让。但无工业应用的详细报导。
我国对离子交换法处理氰化厂含氰废水的研究主要有两个目的,一是解决氰化—锌粉置换工艺产生贫液的全循环问题,即从贫液中除去铜和锌,为了达到较高的吸附容量,通常使用强碱性阴离子交换树脂, 当废水中铜、锌含量分别为140、100mg/L时,强碱树脂的工作吸附容量不小于15kg/m3和6.5kg/m3。饱和树脂经酸洗回收氰化物并能洗脱部分锌,然后用另一种洗脱剂洗脱铜,树脂即可再生,而铜的洗脱剂需经再生方可重复使用,由于工艺较长目前尚无工业应用。
含氰废水→过滤→离 子 交 换→(低浓度含氰废水)返回浸出或处理

(饱和树脂)回收氰化物
↓ 再生树脂返回使用
洗脱重金属

重金属回收

图11-1离子交换法回收氰化物工艺

当然如果废水中铜和SCN-极低时,树脂的再生仅通过酸洗就
可完成,此条件下可保证离子交换工艺出水达标。无论是国内还是国外,其离子交换工艺原则流程大致相同,见图11-1。
4、离子交换法的特点
(一)优点:
1)当废水中CN-低于酸化回收法的经济效益下限时,采用离子交换法由于氰化物和贵金属具有较好的经济效益,其处理效果优于酸化法,当废水组成简单时可排放。
2)投资小于酸化回收法
3)与酸化回收法相比,该方法药耗、电耗小,金回收率高。
(二)缺点:
1)当废水中SCN-含量高时,洗脱困难,树脂的容量受到影响,处理效果变差,离子交换法的应用范围受SCN-很大影响。
2)在洗脱氰化物过程中,很难洗脱铜,故需专门的洗脱方法和步骤,使工艺复杂化。
3)在酸洗过程中,Fe(CN)64-会在树脂颗粒内形成重金属沉淀物而使树脂中毒。
4)对操作者的素质要求高。
三、吸附—回收法
前面已谈过,离子交换为化学吸附,吸附力较强,故解吸困难,解吸成本高。近来,国外开发了用吸附树脂、活性炭做吸附剂,从含氰矿浆或废水中回收铜和氰化物的技术,已完成了半工业试验。
1、吸附树脂吸附—回收法
西澳大利亚一炭浸厂对液相中铜、氰化钠浓度分别为85、158mg/L之氰尾进行了吸附─回收法半工业试验,采用法国地质科学研究所开发的V912吸附树脂,处理能力为10m3/d,处理后尾浆液相中游离氰化物(CN-)浓度小于0.5mg/L。饱和树脂分两级洗脱再返回使用,用金属洗脱剂洗重金属,用硫酸洗脱氰化物,洗脱液用与酸化回收法类似的方法回收氰化物。
试验表明,当铜浓度增加时,处理成本增加较大。
以半工业试验结果推算,建一座年处理能力100万吨的装置,在铜、氰化钠浓度分别为100、300mg/L条件下,设备费为250万加元。年回收铜122t,氰化钠377t,年洗脱树脂1700t次,洗脱每吨树脂的消耗如下(单位:t):

H2SO4攭NaOH Na2S 水 动力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附废水中重金属和氰化物的特性,这早已人所共知,国外早在十年前就有金矿试验用来处理贫液中铜等杂质,使贫液全循环,但没能解决洗脱再生问题。
近年来,西澳大利亚一个炭浆厂完成了用洗性炭从浸出矿浆中回收铜和氰化物的半工业试验,采用加温解吸法选择性解吸铜,含铜解吸液在酸性条件下沉淀氰化铜,再把氰化铜用硫酸氧化为硫酸铜出售。酸性水中的HCN用碱性解吸液吸收再用于解吸工艺中。
铜是氰化过程增加氰化物耗量的一个较大因素,从浸出矿浆中回收铜和氰化物不但避免了铜对浸出的影响,提高了金的浸出率,而且减少了氰化物的消耗,具有一定的经济效益,这一技术在特定的条件下可用来做为贫液全循环工艺中的去除铜措施。
四、自然净化法
黄金氰化厂除少数收购金精矿进行提金然后把氰渣做硫精矿出售而不设尾矿库外,绝大部分矿山建有较大容量的尾矿库(池)。氰化厂废水在其内停留时间一般在1~3天,有个别尾矿库,废水可停留十天以上。由于曝气、光化学反应,共沉淀和生物作用,氰化物的浓度逐渐降低,这种靠尾矿库(池),降低氰化物含量的方法称为自然净化法。目前绝大部分氰化厂都把尾矿库自然净化法做为除氰的一种辅助手段,经废水处理装置处理后的废水再经尾矿库进行二级处理,排水氰含量进一步降低,由于这种方法没有处理成本问题(尾矿库的建设是为了沉降悬浮物和贮有尾矿),故对人们有很大的吸引力,甚至有些氰化厂建立了专门的自然净化池以期使自然净化法的处理效果更好,如何提高自然净化法的处理效果,把目前做为辅助处理方法的自然净化法单独用来处理含氰废水?这是一项很有意义的科研工作,许多科研人员都在深入研究这一课题。
1、自然净化法的特点
由于使用自然净化法的氰化厂不多,可靠的数据有限,其特点尚未充分暴露出来。
(一)优点
1)不使用药剂,处理成本低。
2)与其它方法配合,可做为一级处理方法也可做为二级处理方法,可灵活使用。
3)无二次污染。
(二)缺点
1)对尾矿库要求高,必须不渗漏,汇水面积要大。
2)受季节、气候影响大,在寒冷地区效果差。
2、自然净化法原理
已完成的研究表明,自然净化法至少是曝气、光化学反应、共沉淀和生物分解四种作用的叠加。自然,影响自然净化法效果的因素也就是上述四种作用之影响因素的叠加。
(一)曝气
含氰废水与大气接触,大气中的SO2、NOx、CO2就会被废吸收,使废崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-搅→HSO3-
随着废水pH值的下降,废水中的氰化物趋于形成HCN:
CN-+H+→HCN(aq)
亚铁氰化物会与重金属离子形成沉淀物这一反应促使重金属氰化物的解离,以Zn(CN)42-为例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由于空气中HCN极微,废水中的HCN将倾向于全部逸入大气中,从动力学角度考虑,HCN的逸出速度受如下因素影响:
1)废水温度,废水温度高,HCN蒸气分压高,有利于HCN逸出,而且水温高,水的粘度小,液膜阻力减少。
2)风力,尾矿库上方风力大,水的扰动剧烈,气—液接触面积增大,酸性气体和HCN在气相扩散速度加快,水体内HCN的液相扩散也加快,酸性气体与水的反应加快。
3)尾矿库汇水特性
尾矿库汇水面积大,水层浅,使单位体积废水与空气接触表面增大,风力对水体的搅动效果增大,有利于HCN的逸出和酸性气体的吸收。
4)废水组成
废水中重金属含量高时,HCN的形成和逸出由于受络合物解离平衡的限制,速度明显变慢。
5)废水pH值
废水pH值低,有利于重金属氰络物的解离和HCN的形成。
HCN全部从水中逸出需要较长时间,其道理与酸化回收相似,在1m深的水层条件下,表层氰化物浓度为0.5mg/L时,底层氰化物浓度15mg/L,可见HCN逸出之难度。
在曝气过程中,空气中的氧不断地溶于废水中,其传质速率也受液相扩散阻力的影响,表层溶解氧浓度高,底部浓度低,溶解氧进入液相后,与氰化物发生氧化反应:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰废水在尾矿库内,还会发生水解反应,生成甲酸铵,废水温度越高,反应速度越快:
HCN+H2O=HCO-ONH4
这些反应的总和就是曝气的效果,为了提高曝气效果,必须提高废水温度,废水与空气的接触表面积,增大水体的搅动程度,这样才能保证HCN迅速逸入空气而氧迅速溶解于废水中并和氰化物反应,曝气法受季节地域影响较大。
(二)光化学反应
废水中的各种氰化物在阳光紫外线的照射下,发生如下反应:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亚铁氰化物和铁氰化物离子在光照下分解出游离氰化物,文献介绍在3~5小时的光照时间里,60%~70%的铁氰化物分解、80%~90%的亚铁氰化物分解。由于分解出的氰化物不会很快地被氧化,因而会造成水体氰化物含量增高,这就是地表水水质指标中要求用总氰浓度的原因之一。
分解出的游离氰化物不断地被氧化,水解以及逸入空气中,达到了降低废水中氰化物浓度的目的。
逸入空气中的HCN,在阳光紫外线作用下,与氧发生反应。
HCN+0.5O2→HCNO
夏季,反应时间约10分钟,冬季约1小时,从这点看,HCN的逸出不会影响大气的质量,许多焦化厂利用曝气法处理含氰废水,其氰化物挥发量比黄金行业多,而且大部分工厂位于城市,并未闻发生污染事故。
光化学反应与气温和光照强度有关,因此,夏季除氰效果远比冬季好。
(三)共沉淀作用
废水中亚铁氰化物还会形成Zn2Fe(CN)6、Pb2Fe(CN)6之类的沉淀,与Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉于水底从而达到了去除重金属和氰化物的效果,沉淀效果受pH值和废崐水组成的制约,pH值低时效果好。
(四)生物化学反应
当尾矿库废水氰化物浓度很低时,废水中的破坏氰化物的微生物将逐渐繁殖起来,并以氰化物为碳、氮源,把氰化物分解成碳酸盐和硝酸盐。
生物化学作用受废水组成和温度影响,如果氰化物浓度高达100mg/L,那么微生物就会中毒死亡,如果温度低于10℃,则微生物不能繁殖,生化反应也不能进行。
综上所述,自然净化法的效果受地理位置(南、北方、高原、平原)、天气(阴、晴、气温、风力)、尾矿库(汇水面积、水深、水流速度)微生物,废水组成(pH、氰化物浓度、重金属浓度)废水在尾矿库内停留时间等诸因素的影响。至崐于上述因素对曝气、光化学反应,共沉淀以及生化反应的影响程度,以及这四种除氰途径哪个作用大,目前尚无定量的数据可供参考。某研究所提出的氰化物自净数学模型如下:
C=C0e-kt
其中,k为常数,单位:小时;t为自然净化时间(小时),C、C0分别为某时某刻氰化物浓度和原始氰化物浓度。当温度在10~30℃范围内时,式中k值在0.005~0.01范围,由于k值仅反应了温度,没有反应其它众多的因素,故无多大应用价值。
正因为自然净化法受许多因素制约,其处理效果并不稳定,如果进入尾矿库的崐废水氰化物浓度低(<10mg/L)、废水在尾矿库停留时间长,排水有可能达标,大部分氰化厂把尾矿库做为二级处理设施。然而近年来,由于氰化物处理费用增高,一些氰化厂正探索用尾矿库做为氰化物的一级处理设施。
3、自然净化法的实践
某全泥氰化厂尾矿库建在较厚(2~5m),黄土层的沟内,废水无渗入地下水的可能,该地区干燥少雨,年蒸发水量大于降雨量,故尾矿库无排水,氰化物在尾矿库内自然净化,不再采用其它方法处理,节省了大量药剂、费用,降低了选矿成本。
某全泥氰化厂尾矿库不渗漏,含氰化物尾矿浆直接排入尾矿库,经自然净化再进行二级处理,使其达标排放,由于二级处理的是澄清水,而且氰化物浓度有较大的降低,故处理成本大幅度下降,处理效果好。
某浮选—氰化—锌粉置换工艺装置,其贫液用酸化回收法处理后,残氰在5~20mg/L经浮选废水(浆)稀释后,氰化物含量在0.5~2范围,进入尾矿库自然净化,外排水CN-<0.5mg/L。
某氰化厂采用酸化回收法处理贫液,其酸性废水含氰5~10mg/L,在2m深的废水池内,经20天的自然净化,氰化物降低到0.5mg/L。

⑷ 微生物在污水处理中的应用论文我邮箱是[email protected]谢谢

微生物在污水处理中的应用
摘要:本文主要阐述了各种微生物在不同种类污水中的应用,以及它们不同的应用机理。
关键词:微生物 生活污水 工业污水 农业污水 重金属 农药
1.世界水资源现状
环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。
全球水资源状况迅速恶化,“水危机”日趋严重。据水文地理学家的估算,地球上的水资源总量约为13.8亿立方公里,其中97.5%是海水(13.45亿立方公里)。淡水只占2.5%,其中绝大部分为极地冰雪冰川和地下水,适宜人类享用的仅为0.01%.
20世纪50年代以后,全球人口急剧增长,工业发展迅速。一方面,人类对水资源的需求以惊人的速度扩大;另一方面,日益严重的水污染蚕食大量可供消费的水资源。本届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有200吨垃圾倒进河流、湖泊和小溪,每升废水会污染8升淡水;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲55条河流中仅有5条水质差强人意。
20世纪,世界人口增加了两倍,而人类用水增加了5倍。世界上许多国家正面临水资源危机:12亿人用水短缺,30亿人缺乏用水卫生设施,每年有300万到400万人死于和水有关的疾病。到2025年,水危机将蔓延到48个国家,35亿人为水所困。水资源危机带来的生态系统恶化和生物多样性破坏,也将严重威胁人类生存。
水资源危机既阻碍世界可持续发展,也威胁着世界和平。过去50年中,由水引发的冲突共507起,其中37起有暴力性质,21起演变为军事冲突。专家警告说,随着水资源日益紧缺,水的争夺战将愈演愈烈。
2.污水处理方法分类
2.1物理法
利用物理作用分离废水中呈悬浮状态的污染物质。主要有沉淀法,过滤法,离心分离法,吸附法等。
2.2化学法
利用化学反应原理及方法来分离,回收废水中的污染物,或改变污染物的性质,使它从有害变为无害的处理法。主要有化学凝聚法,中和法,氧化还原法,离子交换法。
2.3生物法
主要利用微生物的生命活动过程,对废水中的污染物质进行转移和转化的作用,从而是污水得到净化的方法。
2.4.微生物简介
微生物是肉眼看不见或看不清的生物的总称。包括原核生物(细菌,放线菌和蓝细菌),真核生物(真菌和微型藻类),非细胞生物(病毒类)。微生物具有体积小、表面积大、繁殖力惊人等特点,能不断与周围环境快速进行物质交换。污水具备微生物生长繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。因此微生物可在污水净化和治理中得到广泛应用,造福人类。
微生物能降解和转化污染物主要是因为微生物具有以下几个特点:个体微小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样;具有多种降解酶;繁殖快,易变异,适应性强;共代谢作用等。
3.原理
利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的.微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它低分子化合物。微生物新陈代谢类型有需氧型和厌氧型两种,因此,净化方法分为好氧净化和厌氧净化.
3.1.好氧净化
氧存在条件下,许多好氧微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等过程中,获寻C源、N源、P源、S和能量。污水的微生物好氧净化就是模拟上述原理,把微生物置于一定的构筑物内通气培养,高效率净化污水的方法。
3.2厌氧净化
微生物在严格厌氧条件下,有机物发酵或消化过程中,大部分有机物被解生成H2、CO2、H2S和CH4等气体。污水的生物厌氧净化就是根据污水经厌氧发酵后既到净化,又获得了生物能源CH4的原理。微物细胞能量转移的电子受体,由好氧条件下分子氧改变为厌氧条件下的有机物。在厌氧件下,不溶于水而难分解的大分子有机污物,被微生物的胞外酶降解为可溶性物质,再由产甲烷厌氧细菌和产氢细菌降解成低分子有酸类和醇类、并放出H2和CO2;有机酸类和类经产甲烷菌降解成H2、CO2和CH4。甲烷菌还可利用H2还原CO2,形成CH4。
微生物净化过程:
Ⅰ.有机污染物的浓度由高变低
Ⅱ.异养细菌迅速氧化分解有机污染物而大量繁殖,然后是以细菌为食料的原生动物出现数量高峰,再后是由于有机物矿化,利于藻类的生长,而出现藻类的生长高峰。
Ⅲ.溶解氧浓度随着有机物被微生物氧化分解而大量消耗,很快降到最低点,随后,由于有机物的无机化和藻类的光合作用及其他好氧微生物数量的下降,溶解氧又恢复到原来水平。
这样,在离开污染源相当的距离之后,水中的微生物数量,有机物,无机物的含量,也都下降到最低点。于是,水体恢复到原来的状态。
微生物处理优点:微生物具有来源广,易培养,繁殖快,对环境适应性强,易变异的特征在生产上较容易的采集菌种进行培养繁殖,并在特定条件下进行驯化,使之适应不同的水质条件,从而通过微生物的新陈代谢使有机物无机化。加之微生物的生存条件温和,新陈代谢时不需要高温高压,它是不需要投加催化剂的.生物法具有废水处理量大、处理范围广、运行费用相对较低,所要投入的人力,物力比其他方法要少的多。在污水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。
4.污水处理中重要的微生物种群
4.1 丝状细菌
丝状细菌(Filamentous bacteria)能显著影响絮状活性污泥的沉降性(污泥膨胀)或引起生物量变化和泡沫形成(污泥发泡),从而严重影响活性污泥的处理效率.传统上,丝状细菌是通过光学显微镜学进行分析鉴定的,如革兰氏和Neisser染色反应、典型的形态学特征等.但应用full—cycle rRNA技术发现,传统形态学鉴定方法不能发现污水厂活性污泥中的许多丝状细菌 。
系统发生树部分提供了丝状菌的系统发生亲缘关系,但有些丝状类型如Eikelboom 1863或Nostocoidalimicola等则是放置在完全无关的类群中.现在利用rRNA目标寡聚核苷酸探针能迅速地鉴定大多数丝状菌,证明在活性污泥中有些丝状菌呈现多态性现象.Kanagawa等(2000)从活性污泥中分离出15种丝状菌,根据形态被分类为Eikelboom 21 N,利用16S rDNA序列分析表明都同变形杆菌亚纲的Thiothrix丝状菌形成单系群(monophyletic group).Thiothrix丝状菌在污水中通常表现出生理多能性,在异养、兼性营养和化能自养情况下,它们都能同标记的乙酸盐或碳酸氢盐结合。在厌氧状况下(无论有无硝酸盐),Thiothrix丝状菌都很活跃,它通过吸收硫代硫酸盐和乙酸盐来形成胞内硫粒。
利用丝状菌的FISH探针,Mircothrix parvicella被发现有特殊的脂消费,在厌氧情况下专门吸收长链脂肪酸(而不是短链脂肪酸和葡萄糖),随后当硝酸盐或氧可用作电子受体时它们则使用贮存完成生长.不过,在厌氧情况下,M.parvicella不能吸收磷,不适合那些有除磷要求的生物反应器.利用FISH技术对丝状菌进行系统分类发现,大多数未描述的丝状菌属于绿色非硫细菌(Chloroflexi),也可能是污水生物处理系统中丰度最高的丝状菌。Liao等(2004)发展一种定量FISH,对实验室和污水厂反应器中的丝状菌进行了研究,以增加Sphaerotilus natans的方式来刺激污泥膨胀,结果发现是Eikelboom 1851菌丛(而不是试验的S.natans菌)同活性污泥容积指数(volume index)极度相关,其可延伸的菌丝长度约为6×10。la,m/mL。
4.2 生物除磷的重要细菌
生物除磷可以在EBPR的微生物途径中由完成,该过程通过循环活性污泥进行交替的厌氧、需氧为特征。基于微生物的纯培养技术,变形杆菌纲г亚纲的不动杆菌属(Acinetobacter)长期被认为是唯一的PAO(Polyphosphate—accumulating organism).但实际上,虽然不动杆菌能积累多聚磷酸盐,却没有PAO的典型代谢方式.Wanger等(1994)用rRNA目的探针测试后认为,主要的PAO应该为口亚纲中的Rhoclocyclus群,其次为 亚纲中的Planctomycete群及屈挠杆菌属(Flexibacter)、CFB群(Cytophaga—Flavobacterium—Bacteroides)等.利用萤光抗体染色、呼吸醌检测和属特异探针的FISH等非培养方法,证明在EBPR系统中,由于培养偏差显然高估了不动杆菌的相对丰度,表明其对EBPR系统实际上不是最重要的,而另外一些分离出的细菌才是PAO的候选者。不过,有7个Acinembacter新种从活性污泥中分离到,可望进一步阐释该属在脱磷中扮演的角色和意义。
积磷小月菌(Microlunatus phosphovorus)是一个高G+C含量的革兰氏阳性菌,被认为是专性好氧菌,可以通过EMP途径发酵葡萄糖为乙酸,而不能够在厌氧情况下生长.有明显吸收葡萄糖、分泌乙酸的转化,导致胞内乙酸积累;产生的乙酸在随后的好氧阶段消耗掉.phosphovorus表现出卓越的吸收和释放磷的能力,磷释放率和吸收率可分别高达3.34 mmol g/cell•h和1.56 mmol g/cell•h,比Lampropedia spp.和Acinetobacterspp.要高1个数量级,特异探针证明其在EB—PR工厂里可占总细菌的2.7%。
俊片菌属(Lampropedia)也拥有聚磷菌的基本代谢特征,但比EBPR模型预言的吸收乙酸盐释放磷酸盐的比率要低很多.那些被建议名为“Candidatus Ac—cumulibacter phosphates”已被证实显著存在于EBPR系统中.Saunders等(2003) 在对6个运行污水厂进行了检测后认为,很可能“无关紧要”的“CandidatusAccumulibacter phosphates”正是重要的PAO.另外还有显微镜原位观察显示,酵母菌很可能涉及在生物除磷中,许多“聚磷菌”很可能是酵母菌的孢子,但其作用机理显然还需要进一步探讨.
4.3 硝化细菌
氮循环是高度依赖微生物活性和转化的一个过程.这类微生物在污水处理、农业等领域具有极其重要的作用,因此成为近年来世界研究的热点,变形杆菌的β亚纲几乎已经成为微生物生态学的模式系统 .Kindaichi等(2004)对自养硝化生物膜进行了FISH分析表明,膜上有50%属于硝化细菌,其余50%为异养细菌,分布为变形杆菌α亚纲23% ,г亚纲13% ,绿色非硫细菌9% ,CFB群2%,未定类群3%.该结果表明,硝化细菌通过可溶性产物的产生支持了异养菌,异养菌也从代谢多样性等方面确保了生物膜的生态稳定性 .从培养角度来说,硝化细菌生长极慢;由于硝化细菌的分布同pH、温度等敏感,所以污水厂的硝化作用常有崩溃的情况发生.
4.3.1 氨氧化茵
基于16S rDNA序列分析,已经分离和描述过的氨氧化细菌都分属于变形杆菌纲的2个单系群中.Ni-trosococcusoceanus和N.halophilus属于Proteobacteria的β亚纲,包括亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化弧菌属(Nitrosovibrio)和亚硝化叶菌属(Nitrosolobus),后3个属关系密切;而Nitrosococcus mobilis(实际是Nitrosomonas的一个成员)则在β亚纲组成紧密相关的集合.
4.3.2 亚硝酸氧化茵
基于超微特性,已培养出的亚硝酸氧化菌(Nitrite.oxidizing bacteria,NOB)被分为4个已知属,硝化杆菌属(Nitrobacter),硝化刺菌属(Nitrospina),硝化球菌属(Nitrococcus)和硝化螺菌属(Nhrospira).16S rDNA序列比较分析表明,硝化杆菌属及其3个种都属于变形杆菌的α一亚纲;Nitrospina和Nitrococcus各有一个种,分属于变形杆菌的δ和г一亚纲;Nitrospira属包含有moscoviensis和Ⅳ.rrtarin.在传统上,Nitrobacter一直被认为是最重要的亚硝酸盐氧化菌.然而,在硝化污水厂内用目的探针的FISH法和定量斑点杂交(Quantitative dot blot)等发现,检测不到Nitrobacter或者数目很低,因此凸现了非Nitrobacter的NOB在硝化过程中的重要性.Egli等(2003)用不同污泥接种反应器,利用定量FISH和RFLP(Restriction fragment length polymorphism)方法对稳定的硝化作用反应器进行检测,发现有活性的都属于Nitrospira属 J.以Nitrospira序列发展的特定16S rRNA探针,对活性污泥进行FISH查后表明,未培养的类硝化螺菌(Nitrospira—like)以显著性数目(总菌数的9%)存在,其对亚硝酸盐氧化的重要性已由反应器富集研究所证实.Nhrospira能固定CO:,也能利用丙酮酸混合营养生长,而不利用乙酸盐、丁酸盐和丙酸盐。
4.4 反硝化细菌
反硝化细菌(Denitrifying bacteria)的大多数鉴定和计数都是依赖培养法.很多属的成员,如产碱杆菌属(Alcaligenes)、假单胞菌属(Pseudomonas)、甲基杆菌属(Methylobacteriurn),副球菌属(Paracoccus)和生丝微菌属(Hyphornicrobiurrt)等,都从污水厂中作为脱氮微生物群分离出来过,但这些细菌属在污水厂中是否具有原位脱氮的活性却很少被知道.在一个补充以甲醇作为还原碳化物的脱氮沙滤中,使用特异FISH探针监测到有大量数目的P.spp和H.spp;而在没有附加甲醇的非脱氮沙滤中,两属存在的数目都低于总细胞0.1% ,这间接证明了在脱氮过程中有两属的活性参与。
5.水污染物的类型及处理
5.1生活污水
生活污水是一大污染源。生活污水中含有大量的无机物,有机物。无机物如氯化物,硫酸盐,磷酸盐和钠,钾,钙,铁等碳酸盐,有机物有纤维素,淀粉,脂肪,蛋白质和尿素等。排放入环境中促使浮游植物生长和大量繁殖,形成赤潮和水华。
生活污水的处理主要是其中有机物的分解,其主要方法有活性污泥法、生物膜法、AB法。
5.1.1活性污泥法
活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
5.1.2生物膜法
生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。
5.1.3AB法
AB法工艺由德国B0HUKE教授首先开发。该工艺将曝气池分为高低负荷两段,各有独立的沉淀和污泥回流系统。高负荷段A段停留时间约20-40分钟,以生物絮凝吸附作用为主,同时发生不完会氧化反应,生物主要为短世代的细菌群落,去除BOD达50%以上。B段与常规活性污泥相似,负荷较低,泥龄较长。
5.2工业废水
工业废水是水体污染的主要污染源。包括钢铁工业废水,食品工业废水,印刷废水,化工废水等。随着工业化的发展,含有重金属离子的废水产生量越来越多。重金属离子已成为最重要、最常见的污染物之一。由于重金属在生物体内的富集、吸收与转化,从而通过食物链危害人体健康。如致癌、致畸等,故而处理重金属污染刻不容缓。
微生物处理技术在生活污水处理中的应用已经非常成熟并且全面普及,但是在工业污水的处理中还存在着一定的技术问题。相对于生活污水来说,工业污水的成份要复杂的多,大多数工业污水的COD值都相当高,可生化性差,这就给微生物处理带来了相当大的难度,有些工业污水甚至还有很高的氨氮指标,增加了微生物处理的难度。但是微生物技术的许多优势注定了它将是工业污水治理的一个方面,而且目前已经有很多行业的工业污水开始采用微生物处理技术并且得到了稳定的运行数据。
这里主要讲述关于污水中重金属的处理。目前可用的微生物法有生物吸附法、硫酸盐还原菌净化法和利用微生物的转化作用去除重金属。
5.2.1生物吸附法
生物吸附是利用生物量(如发酵工业的剩余菌体)通过物理化学机制,将金属吸附或通过细胞吸收并浓缩环境中的重金属离子,由于重金属具有毒性,如果浓度太高,活的微生物细胞就会被杀死。所以,必须控制控制被处理水的重金属浓度。
例如陈小霞等人用小球藻富集铬离子,研究表明小球藻富集铬离子的机制主要表现是表面吸附和主动运输。在生长期和稳定期小球藻富集的铬以有机铬存在,而在衰亡期,小球藻富集的铬以无机铬存在。
利用工业发酵后剩余的芽孢杆菌菌体或酵母菌吸附重金属,具体做法是首先用碱处理菌体,以便增加其吸附重金属的能力。然后通过化学交联法固定这些细胞,固定化的芽孢杆菌对重金属的吸附没有选择性(微生物在结合无机污染物上表现出选择性,多于大多数合成的化学吸附剂,微生物对金属的吸附和累积主要取决于不同配位体结合部位对对金属的选择性)。可以去除废水中的Cd、Cr、Cu、Hg、Ni、Pb、Zn 去除率可达99%。吸附在细胞上的重金属可以用硫酸洗脱,然后用化学方法回收重金属,经过碱处理后的固定化细胞还可以重新用于吸附重金属。
5.2.2硫酸盐还原菌净化法
脱硫弧菌属硫酸盐还原菌是厌氧化能细菌,它最大的特征就是在无自由氧的条件下,在有机质存在时通过还原硫酸根变成硫化氢,从中获得生长能量而大量繁殖;它繁殖的结果是使溶解度很大的硫酸盐变成了极难溶解的硫化物或硫化氢。这类细菌分布广泛,海洋、湖泊、河流及陆地上都能存在。在没有自由氧而有硫酸盐及有机物存在的地方它就能生长繁殖,其生长温度为25~35摄氏度,PH值为6.2~7.5.该细菌的作用可将废水中的硫酸根变成硫化氢,使废水中浓度较高的重金属Cu、Pb、Zn等转变为硫化物而沉淀,从而使废水中的重金属离子得以去除。
5.2.3利用微生物的转化作用去除重金属
微生物可以通过氧化作用、还原作用、甲基化作用和去烷基化作用对重金属和重金属类化合物进行转化。
细菌胞外的荚膜或粘膜层可产生多种胞外多聚体,胞外多聚体能够吸附自然条件下或废水处理设施中的重金属。其主要成分是多糖、蛋白质和核酸。
真菌的细胞壁内含几丁质,这和N----乙酰葡糖胺多聚体是一种有效的金属于放射性核素结合的生物吸附剂。经过氢氧化物处理的各类真菌暴露出来的几丁质、脱乙酰壳多糖和其他金属结合的配位体,形成菌丝层,可以有效的去除废水中的重金属。
六价铬具有强烈的毒性,其毒性是三价铬的100倍,而且能在人体内沉淀。由于六价铬很容易通过胞膜进入细胞,然后在细胞质、线粒体和细胞核中被还原为三价铬,三价格在细胞内与蛋白质结合为稳定的物质并且和核酸相作用,而细胞外的三价铬是不能参透细胞的,细菌利用细胞中的NADH作为还原剂,在厌氧或好氧的状态下,将六价铬还原为三价铬。如阴沟肠杆菌能抗10000µmol/l铬酸盐,在厌氧的条件下能使六价铬还原为三价铬,三价铬可以通过沉淀反应与水分离而被去除。
5.3农业废水
它面广而量大且分散。农田使用农药,化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。
5.3.1 农业生产上主要使用的农药类型
当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。
表1 农业生产中常用农药种类简表

类 型 农 药 品 种

有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等

杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等
有机氯:六六六、滴滴涕、毒杀芬等

杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等

除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等

杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等
生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等
人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。
5.3.2 降解农药的微生物类群
土壤中的微生物,包括细菌、真菌、放线菌和藻类等,它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。
5.3.3 微生物降解农药的机理
目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。
表2 常见农药的降解微生物
农 药 降 解 微 生 物
甲胺磷 芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母
阿特拉津(AT) 烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌
幼脲3号 真菌
敌杀死 产碱杆菌
2,4-D 假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、
DDT 无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等
丙体六六六 白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等
对硫磷 大肠杆菌、芽孢杆菌
七 氯 芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌
敌百虫 曲霉菌、镰孢霉菌
敌敌畏 假单胞菌
狄氏剂 芽孢杆菌、假单胞菌
艾氏剂 镰孢霉菌、青霉菌
乐 果 假单胞菌
2,4,5-T 无色杆菌、枝动杆菌
细菌降解农药的本质是酶促反应,即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分;有的是诱导酶系,如王永杰等得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差,这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。

⑸ 城市污水处理常用方法有哪些他们有哪些优缺点

城市污水治理的几种常用方法
活性污泥处理法
目前在城市生活污水中应用最多的就是所谓的活性污泥法,它有处理能力强,处理后水质好等优势。其大致组成包括由曝气池,沉淀池,污泥排放以及回流等系统。待处理的污水和活性污泥回流共同进入曝气池然后混合,然后在其中与空气接触使得含氧量增加,发生代谢反应。经过充分搅拌的混合液变为悬浮状态,所以其中的有机污染物和氧气能够与微生物接触发生反应。接下来进入的是沉淀池,原来的悬浮固体会在其中沉降而被隔离,所以从沉淀池流出的已经为净化水。沉淀池里的污泥一般都会回流,从而保证曝气池中的悬浮固体和微生物有一定的浓度。在曝气池里的反应会使微生物增殖,所以过多的微生物要排出沉淀池以维持整个系统的稳定性。除需要能够氧化和分解有机物外,活性污泥还必须有一定凝聚和沉降能力,以便可以使其从混合液中分离,进而在出口得到纯净的水。活性污泥法的缺点在于其基础建设的成本过高,不易实施。
生物膜处理法
所谓生物膜法,就是通过在一些固体物表面附着的微生物对污水中的有机污染物加以处理的方法。它和活性污泥处理方法发展时间基本一致。所谓的“生物膜”即是附着在固体表面的微生物形象叫法,一般是由非常密集的好氧菌,厌氧菌,原生动物和藻类等结合一起形成的生态系统。生物膜所附着的固体介质叫做载体或滤料,由此向外生物膜可以分成厌气层,好气层,附着以及运动水层。整个方法的基本运作过程为,先由生物膜吸附水层中的有机物,然后由好氧菌进行分解,再由厌氧菌进行厌气分解,运动水层通过流动不断更新生物膜,由此反复实现对污水的净化作用。
一般适用生物膜法的场合为中小规模城市废水的处理,所用的处理结构是生物滤池或生物转盘,在我国的南方一般使用生物滤池。由于材料和技术的不断革新,生物膜法技术近年来进步很大。因为生物膜法中微生物一般固定在填料上,所以构成的生态系统比较稳定,微生物生活和消耗的能量比活性污泥法中要小得多,其剩余的污泥也更少。生物膜法所拥有的高效率高,高耐冲击性、产泥量低以及运管便利性等优势使其在各种处理方法中竞争力极大。生物膜法的劣势在于成本较高且单位处理效率低。所以进一步降低成本,提高效率是今后生物膜法研究的主要方向。
氧化处理法
氧化处理法是当今被广泛使用的一种城市污水预处理方法,有较大的潜力。可根据其中氧化剂的种类和反应器类型对其分类为化学氧化法,催化氧化法以及光催化氧化法等。其中,化学氧化法的操作比较简单,但效果不够明显且运行成本较高,所以实际工作中应用不多。为实现处理效果的提高,降低成本的目标,目前找到了一些其他氧化技术。
在这些新方法中的其中一种就是光催化法。它的特点是所需设备简单,条件温和,氧化能力高并且处理效果彻底。在污水处理中受到广泛欢迎。
光催化反应就是通过光的作用发生的化学反应。反应过程中分子由于吸收特定波长的光波而转变为分子激发态,进而发生化学反应形成新物质,或者变成中间化学产物以促进热反应的进行。光化学反应所需的活化能来自于光,把太阳能的中的光能进行光电转化和光化学转化加以利用是目前非常热门的研究领域。
光催化氧化技术利用光激发氧化将O2、H2O2等氧化剂与光辐射相结合。所用光主要为紫外光,包括uv-H2O2、uv-O2等工艺,可以用于处理污水中CHCl3、CCl4、多氯联苯等难降解物质。另外,在有紫外光的Feton 体系中,紫外光与铁离子之间存在着协同效应,使H2O2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。
所谓光化学反应,就是只有在光的作用下才能进行的化学反应。该反应中分子吸收光能被激发到高能态,然后电子激发态分子进行化学反应。光化学反应的活化能来源于光子的能量。在太阳能利用中,光电转换以及光化学转换一直是光化学研究十分活跃的领域。80 年代初,开始研究光化学应用于环境保护,其中光化学降解治理污染尤受重视,包括无催化剂和有催化剂的光化学降解。前者多采用臭氧和过氧化氢等作为氧化剂,在紫外光的照射下使污染物氧化分解;后者又称光催化降解,一般可分为均相、多相两种类型。均相光催化降解主要以Fe2+或Fe3+及H2O2为介质,通过光助-芬顿(photo-Fenton)反应使污染物得到降解,此类反应能直接利用可见光;多相光催化降解就是在污染体系中投加一定量的光敏半导体材料,同时结合一定能量的光辐射,使光敏半导体在光的照射下激发产生电子空穴对,吸附在半导体上的溶解氧、水分子等与电子-空穴作用,产生·OH 等氧化性极强的自由基,再通过与污染物之间的羟基加合、取代、电子转移等使污染物全部或接近全部矿质化,最终生成CO2、H2O 及其它离子如NO3-、PO43-、S042-、Cl-等。与无催化剂的光化学降解相比,光催化降解在环境污染治理中的应用研究更为活跃。
氧化处理法目前由于低成本以及高效率的优势特点处理方式已经得到了广泛的关注。另外它在对污水进行深度处理和不易进行生物降解的有机废水处理等场合都有不错的前景,成为了国内外一项活跃的研究课题,很多人认为氧化法将在21 世纪成为废水处理的一项重要方法。

⑹ 污水处理知识

按污水来源分类,污水处理一般分为生产污水处理和生活污水处理。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和有机物的复杂混合物,包括:①漂浮和悬浮的大小固体颗粒;②胶状和凝胶状扩散物;③纯溶液。
按污水的性质来分,水的污染有两类:一类是自然污染;另一类是人为污染。当前对水体危害较大的是人为污染。水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类。污染物主要有::(1)未经处理而排放的工业废水;(2)未经处理而排放的生活污水;(3)大量使用化肥、农药、除草剂的农田污水;(4)堆放在河边的工业废弃物和生活垃圾;(5)水土流失;(6)矿山污水。
污水处理厂:有人调查100多座大处理厂,一半晒太阳呢,还有资金不足\成本高\效率低的,普遍效率不足70%,低的只有40%.
污水处理成本能耗情况:基本都是高能耗\低效率。
目前城市生活污水排放已是我国城市水的主要污染源,城市生活污水处理是当前和今后城市节水和城市水环境保护工作的重中之重,这就要求我们要把处理生活污水设施的建设作为城市基础设施的重要内容来抓,而且是急不可待的事情 。

⑺ 荣县国有资产经营投资有限公司怎么样

荣县国有资产经营投资有限公司是2005-11-07在四川省自贡市荣县注册成立的有限责任公司(国有独资),注册地址位于荣县旭阳镇沿河西路88号。

荣县国有资产经营投资有限公司的统一社会信用代码/注册号是91510321782250679K,企业法人周评,目前企业处于开业状态。

荣县国有资产经营投资有限公司的经营范围是:政府授权的国有资产的经营、投资(不得从事非法集资、吸收公众资金等金融活动);公路工程建筑;建筑工程;充电桩充电服务;机动车充电桩充电零售;建筑装修装饰工程;建筑工程施工;房地产开发经营;燃气生产和供应;道路货物运输;普通货物仓储服务;餐饮服务;土地整理;社会经济咨询(不得从事非法集资、吸收公众资金等金融活动);污水处理及其再生利用;农业技术推广服务;市场经营管理服务;专业停车场服务。(以上经营范围不含前置许可项目,依法须经批准的项目,经相关部门批准后方可开展经营活动)。在四川省,相近经营范围的公司总注册资本为214088万元,主要资本集中在 5000万以上 规模的企业中,共17家。

通过爱企查查看荣县国有资产经营投资有限公司更多信息和资讯。

阅读全文

与自贡荣县光学污水处理相关的资料

热点内容
福州长乐区光学水处理设备价格 浏览:971
崇左市电池软化水设备 浏览:807
驻马店平舆县线路去离子水设备 浏览:997
广西省制药纯水处理设备 浏览:534
宁德蕉城区食品废水处理厂家 浏览:241
周口西华县化工去离子水设备 浏览:913
平凉泾川县电池水处理系统 浏览:781
鄂州梁子湖区食品水处理系统 浏览:635
红河河口瑶族自治县锅炉去离子水设备 浏览:495
自贡富顺县电子纯水处理设备 浏览:413
承德兴隆县电池废水处理设备 浏览:911
宁德古田县电子废水处理设备 浏览:645
徐州泉山区电子去离子水设备 浏览:56
昌吉奇台县食品污水处理 浏览:973
武汉汉阳区锅炉水处理系统 浏览:299
长沙芙蓉区纺织废水处理厂家 浏览:669
三门峡渑池县食品水处理设备价格 浏览:371
长沙浏阳市锅炉纯水处理设备 浏览:1
锦州黑山县印染去离子水设备 浏览:920
来宾武宣县印染水处理设备价格 浏览:426